Cholesterol esters (CE) derived from hepatic sterol O-acyltransferase 2 (SOAT2) are associated with more atherosclerosis than CE from intestinal SOAT2.
نویسندگان
چکیده
RATIONALE Cholesterol esters (CE), especially cholesterol oleate, generated by hepatic and intestinal sterol O-acyltransferase 2 (SOAT2) play a critical role in cholesterol homeostasis. However, it is unknown whether the contribution of intestine-derived CE from SOAT2 would have similar effects in promoting atherosclerosis progression as for liver-derived CE. OBJECTIVE To test whether, in low-density lipoprotein receptor null (LDLr(-/-)) mice, the conditional knockout of intestinal SOAT2 (SOAT2(SI-/SI-)) or hepatic SOAT2 (SOAT2(L-/L-)) would equally limit atherosclerosis development compared with the global deletion of SOAT2 (SOAT2(-/-)). METHODS AND RESULTS SOAT2 conditional knockout mice were bred with LDLr(-/-) mice creating LDLr(-/-) mice with each of the specific SOAT2 gene deletions. All mice then were fed an atherogenic diet for 16 weeks. SOAT2(SI-/SI-)LDLr(-/-) and SOAT2(-/-)LDLr(-/-) mice had significantly lower levels of intestinal cholesterol absorption, more fecal sterol excretion, and lower biliary cholesterol levels. Analysis of plasma LDL showed that all mice with SOAT2 gene deletions had LDL CE with reduced percentages of cholesterol palmitate and cholesterol oleate. Each of the LDLr(-/-) mice with SOAT2 gene deletions had lower accumulations of total cholesterol and CE in the liver compared with control mice. Finally, aortic atherosclerosis development was significantly lower in all mice with global or tissue-restricted SOAT2 gene deletions. Nevertheless, SOAT2(-/-)LDLr(-/-) and SOAT2(L-/L-)LDLr(-/-) mice had less aortic CE accumulation and smaller aortic lesions than SOAT2(SI-/SI-)LDLr(-/-) mice. CONCLUSIONS SOAT2-derived CE from both the intestine and liver significantly contribute to the development of atherosclerosis, although the CE from the hepatic enzyme appeared to promote more atherosclerosis development.
منابع مشابه
Acute Sterol O-Acyltransferase 2 (SOAT2) Knockdown Rapidly Mobilizes Hepatic Cholesterol for Fecal Excretion
The primary risk factor for atherosclerotic cardiovascular disease is LDL cholesterol, which can be reduced by increasing cholesterol excretion from the body. Fecal cholesterol excretion can be driven by a hepatobiliary as well as a non-biliary pathway known as transintestinal cholesterol efflux (TICE). We previously showed that chronic knockdown of the hepatic cholesterol esterifying enzyme st...
متن کاملPlasma cholesteryl esters provided by lecithin:cholesterol acyltransferase and acyl-coenzyme a:cholesterol acyltransferase 2 have opposite atherosclerotic potential.
Evidence suggests that ACAT2 is a proatherogenic enzyme that contributes cholesteryl esters (CEs) to apoB-containing lipoproteins, whereas LCAT is an antiatherogenic enzyme that facilitates reverse cholesterol transport by esterifying free cholesterol on HDL particles. We hypothesized that deletion of LCAT and ACAT2 would lead to absence of plasma CEs and reduced atherosclerosis. To test this h...
متن کاملCoordinated alteration of hepatic gene expression in fatty acid and triglyceride synthesis in LCAT-null mice is associated with altered PUFA metabolism.
Complete lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with fasting hypertriglyceridemia (HTG). We recently reported that, in ldlr(-/-)xlcat(-/-) mice, fasting HTG is associated with hepatic triglyceride overproduction in association with an upregulation of the hepatic srebp1 gene and altered expression of its target genes in lipogenesis and gluconeogenesis. We further in...
متن کاملSterol O-Acyltransferase 2 Contributes to the Yolk Cholesterol Trafficking during Zebrafish Embryogenesis
To elucidate whether Sterol O-acyltransferase (Soat) mediates the absorption and transportation of yolk lipids to the developing embryo, zebrafish soat1 and soat2 were cloned and studied. In the adult zebrafish, soat1 was detected ubiquitously while soat2 mRNA was detected specifically in the liver, intestine, brain and testis. Whole mount in situ hybridization demonstrated that both soat1 and ...
متن کاملHepatic acyl-coenzyme a:cholesterol acyltransferase-2 expression is decreased in mice with hyperhomocysteinemia.
Alterations in lipid metabolism may contribute to the pathology of hyperhomocysteinemia (HHcy). Our objective in this study was to test the hypothesis that HHcy is associated with changes in liver acyl CoA:cholesterol acyl transferase 2 (ACAT2) expression and cholesteryl esters (CE) in mice with HHcy. ACAT2 is encoded by Soat2 and functions to catalyze the esterification of cholesterol with acy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 115 10 شماره
صفحات -
تاریخ انتشار 2014